Skip to content
Cloudflare Docs

Analyze data with AI

Build an AI-powered data analysis system that accepts CSV uploads, uses Claude to generate Python analysis code, executes it in sandboxes, and returns visualizations.

Time to complete: 25 minutes

Prerequisites

  1. Sign up for a Cloudflare account.
  2. Install Node.js.

Node.js version manager

Use a Node version manager like Volta or nvm to avoid permission issues and change Node.js versions. Wrangler, discussed later in this guide, requires a Node version of 16.17.0 or later.

You'll also need:

1. Create your project

Create a new Sandbox SDK project:

Terminal window
npm create cloudflare@latest -- analyze-data --template=cloudflare/sandbox-sdk/examples/minimal
Terminal window
cd analyze-data

2. Install dependencies

Terminal window
npm i @anthropic-ai/sdk

3. Build the analysis handler

Replace src/index.ts:

TypeScript
import { getSandbox, proxyToSandbox, type Sandbox } from "@cloudflare/sandbox";
import Anthropic from "@anthropic-ai/sdk";
export { Sandbox } from "@cloudflare/sandbox";
interface Env {
Sandbox: DurableObjectNamespace<Sandbox>;
ANTHROPIC_API_KEY: string;
}
export default {
async fetch(request: Request, env: Env): Promise<Response> {
const proxyResponse = await proxyToSandbox(request, env);
if (proxyResponse) return proxyResponse;
if (request.method !== "POST") {
return Response.json(
{ error: "POST CSV file and question" },
{ status: 405 },
);
}
try {
const formData = await request.formData();
const csvFile = formData.get("file") as File;
const question = formData.get("question") as string;
if (!csvFile || !question) {
return Response.json(
{ error: "Missing file or question" },
{ status: 400 },
);
}
// Upload CSV to sandbox
const sandbox = getSandbox(env.Sandbox, `analysis-${Date.now()}`);
const csvPath = "/workspace/data.csv";
await sandbox.writeFile(csvPath, await csvFile.text());
// Analyze CSV structure
const structure = await sandbox.exec(
`python3 -c "import pandas as pd; df = pd.read_csv('${csvPath}'); print(f'Rows: {len(df)}'); print(f'Columns: {list(df.columns)[:5]}')"`,
);
if (!structure.success) {
return Response.json(
{ error: "Failed to read CSV", details: structure.stderr },
{ status: 400 },
);
}
// Generate analysis code with Claude
const code = await generateAnalysisCode(
env.ANTHROPIC_API_KEY,
csvPath,
question,
structure.stdout,
);
// Write and execute the analysis code
await sandbox.writeFile("/workspace/analyze.py", code);
const result = await sandbox.exec("python /workspace/analyze.py");
if (!result.success) {
return Response.json(
{ error: "Analysis failed", details: result.stderr },
{ status: 500 },
);
}
// Check for generated chart
let chart = null;
try {
const chartFile = await sandbox.readFile("/workspace/chart.png");
const buffer = new Uint8Array(chartFile.content);
chart = `data:image/png;base64,${btoa(String.fromCharCode(...buffer))}`;
} catch {
// No chart generated
}
await sandbox.destroy();
return Response.json({
success: true,
output: result.stdout,
chart,
code,
});
} catch (error: any) {
return Response.json({ error: error.message }, { status: 500 });
}
},
};
async function generateAnalysisCode(
apiKey: string,
csvPath: string,
question: string,
csvStructure: string,
): Promise<string> {
const anthropic = new Anthropic({ apiKey });
const response = await anthropic.messages.create({
model: "claude-sonnet-4-5",
max_tokens: 2048,
messages: [
{
role: "user",
content: `CSV at ${csvPath}:
${csvStructure}
Question: "${question}"
Generate Python code that:
- Reads CSV with pandas
- Answers the question
- Saves charts to /workspace/chart.png if helpful
- Prints findings to stdout
Use pandas, numpy, matplotlib.`,
},
],
tools: [
{
name: "generate_python_code",
description: "Generate Python code for data analysis",
input_schema: {
type: "object",
properties: {
code: { type: "string", description: "Complete Python code" },
},
required: ["code"],
},
},
],
});
for (const block of response.content) {
if (block.type === "tool_use" && block.name === "generate_python_code") {
return (block.input as { code: string }).code;
}
}
throw new Error("Failed to generate code");
}

4. Set up local environment variables

Create a .dev.vars file in your project root for local development:

Terminal window
echo "ANTHROPIC_API_KEY=your_api_key_here" > .dev.vars

Replace your_api_key_here with your actual API key from the Anthropic Console.

5. Test locally

Download a sample CSV:

Terminal window
# Create a test CSV
echo "year,rating,title
2020,8.5,Movie A
2021,7.2,Movie B
2022,9.1,Movie C" > test.csv

Start the dev server:

Terminal window
npm run dev

Test with curl:

Terminal window
curl -X POST http://localhost:8787 \
-F "file=@test.csv" \
-F "question=What is the average rating by year?"

Response:

{
"success": true,
"output": "Average ratings by year:\n2020: 8.5\n2021: 7.2\n2022: 9.1",
"chart": "data:image/png;base64,...",
"code": "import pandas as pd\nimport matplotlib.pyplot as plt\n..."
}

6. Deploy

Deploy your Worker:

Terminal window
npx wrangler deploy

Then set your Anthropic API key as a production secret:

Terminal window
npx wrangler secret put ANTHROPIC_API_KEY

Paste your API key from the Anthropic Console when prompted.

What you built

An AI data analysis system that:

  • Uploads CSV files to sandboxes
  • Uses Claude's tool calling to generate analysis code
  • Executes Python with pandas and matplotlib
  • Returns text output and visualizations

Next steps